Han found a way to compute complicated expressions more easily. Since 2 β‹… 5 = 10 2β‹…5=10​, he looks for pairings of 2 2​s and 5 5​s that he knows equal 10 10​. For example, 3 β‹… 2 4 β‹… 5 5 = 3 β‹… 2 4 β‹… 5 4 β‹… 5 = ( 3 β‹… 5 ) β‹… ( 2 β‹… 5 ) 4 = 15 β‹… 1 0 4 = 150 , 000 3β‹…2 4 β‹…5 5 =3β‹…2 4 β‹…5 4 β‹…5=(3β‹…5)β‹…(2β‹…5) 4 =15β‹…10 4 =150,000 ​ Use Han's technique to compute the following: a) 2 4 β‹… 5 β‹… ( 3 β‹… 5 ) 3 2 4 β‹…5β‹…(3β‹…5) 3