The solution to a system of equations is (6-3). Choose two equations that might make up the system. Y= -3x+6 Y=2x-9 y=-5x+27 y=2x-15 y=-4x+27

Answer: C) y = -5x + 27 and D) y = 2x - 15
Step-by-step explanation:
Substitute x = 6 and y = -3 into each of the given equations to see which result in a TRUE statement.
A) y = -3x + 6
-3 = -3(6) + 6
-3 = -18 + 6
-3 = -12 FALSE
B) y = 2x - 9
-3 = 2(6) - 9
-3 = 12 - 9
-3 = 3 FALSE
C) y = -5x + 27
-3 = -5(6) + 27
-3 = -30 + 27
-3 = -3 TRUE!
D) y = 2x - 15
-3 = 2(6) - 15
-3 = 12 - 15
-3 = -3 TRUE!
E) y = -4x + 27
-3 = -4(6) + 27
-3 = -24 + 27
-3 = 3 FALSE
The equations [tex]y = -5\cdot x + 27[/tex] and [tex]y = 2\cdot x -15[/tex] might make up the system.
Let [tex](x,y) = (6,-3)[/tex], we proceed to check each expression to determine which two of the four formulas contain that point:
[tex]y = -3\cdot x + 6[/tex]
[tex]y = -3\cdot (6) + 6[/tex]
[tex]y = -12[/tex]
[tex]y = 2\cdot x - 9[/tex]
[tex]y = 2\cdot (6) -9[/tex]
[tex]y = 3[/tex]
[tex]y = -5\cdot x + 27[/tex]
[tex]y = -5\cdot (6)+27[/tex]
[tex]y = -3[/tex]
[tex]y = 2\cdot x -15[/tex]
[tex]y = 2\cdot (6) -15[/tex]
[tex]y = -3[/tex]
[tex]y = -4\cdot x + 27[/tex]
[tex]y = -4\cdot (6) + 27[/tex]
[tex]y = 3[/tex]
The equations [tex]y = -5\cdot x + 27[/tex] and [tex]y = 2\cdot x -15[/tex] might make up the system. [tex]\blacksquare[/tex]
To learn more on systems of linear equations, we kindly invite to check this verified question: https://brainly.com/question/20379472