The solution to a system of equations is (6-3). Choose two equations that might make up the system. Y= -3x+6 Y=2x-9 y=-5x+27 y=2x-15 y=-4x+27

The solution to a system of equations is 63 Choose two equations that might make up the system Y 3x6 Y2x9 y5x27 y2x15 y4x27 class=

Respuesta :

Answer:  C) y = -5x + 27     and       D) y = 2x - 15

Step-by-step explanation:

Substitute x = 6 and y = -3 into each of the given equations to see which result in a TRUE statement.

A) y = -3x + 6

  -3 = -3(6) + 6

  -3 = -18 + 6

  -3 = -12     FALSE

B) y = 2x - 9

  -3 = 2(6) - 9

   -3 = 12 - 9

   -3 = 3     FALSE

C) y = -5x + 27

  -3 = -5(6) + 27

  -3 = -30 + 27

  -3 = -3    TRUE!

D) y = 2x - 15

  -3 = 2(6) - 15

  -3 = 12 - 15

  -3 = -3    TRUE!

E) y = -4x + 27

  -3 = -4(6) + 27

  -3 = -24 + 27

  -3 = 3   FALSE

The equations [tex]y = -5\cdot x + 27[/tex] and [tex]y = 2\cdot x -15[/tex] might make up the system.

Determination of two linear equations that satisfies a given solution

Let [tex](x,y) = (6,-3)[/tex], we proceed to check each expression to determine which two of the four formulas contain that point:

Equation 1

[tex]y = -3\cdot x + 6[/tex]

[tex]y = -3\cdot (6) + 6[/tex]

[tex]y = -12[/tex]

Equation 2

[tex]y = 2\cdot x - 9[/tex]

[tex]y = 2\cdot (6) -9[/tex]

[tex]y = 3[/tex]

Equation 3

[tex]y = -5\cdot x + 27[/tex]

[tex]y = -5\cdot (6)+27[/tex]

[tex]y = -3[/tex]

Equation 4

[tex]y = 2\cdot x -15[/tex]

[tex]y = 2\cdot (6) -15[/tex]

[tex]y = -3[/tex]

Equation 5

[tex]y = -4\cdot x + 27[/tex]

[tex]y = -4\cdot (6) + 27[/tex]

[tex]y = 3[/tex]

The equations [tex]y = -5\cdot x + 27[/tex] and [tex]y = 2\cdot x -15[/tex] might make up the system. [tex]\blacksquare[/tex]

To learn more on systems of linear equations, we kindly invite to check this verified question: https://brainly.com/question/20379472