given the piecewise function shown below, select all of the statements that are true

Answer:
Step-by-step explanation:
[tex]f(x)=\left\{\begin{array}{ccc}-3x,&x<0\\4,&x=0\\x^2,&x>0\end{array}\right\\\\\\A.\ f(1)=-3\\\\1>0\to f(x)=x^2\\\\f(1)=1^2=1\neq-3\\--------------\\B.\ f(4)=0\\\\0=0\to f(x)=4\\\\f(0)=4\neq0\\--------------\\C.\ f(3)=9\\\\3>0\to f(x)=x^2\\\\f(3)=3^2=9\qquad\boxed{CORRECT :)}\\--------------\\D.\ f(2)=4\\\\2>0\to f(x)=x^2\\\\f(2)=2^2=4\qquad\boxed{CORRECT :)}[/tex]
The statement that is true for the piece-wise function is:
C. f(3)=9
and D. f(2)=4
We are given a function f(x) as:
f(x)= -3x when x<0
4 when x=0
and x² when x>0
Now in order to calculate the value f(1), f(2), f(3), f(4) we need to use the function f(x)= x²
( Since, 1,2,3 and 4 is greater than 0
since the function f(x)=x² is defined for x>0 )
Hence,
we have;
f(1)=(1)²=1
f(2)=(2)²=4
f(3)=(3)²=9
and f(4)=(4)²=16
The correct options are:
Option: C and option: D