Answer:
V = 6.81[tex]\frac{m}{s}[/tex]
Explanation:
Data:
k = 200 N/m
mass = 2.0 kg
x = 4.0 cm => 0.04m
There will only be vertical force, using 2nd Newton's law:
Fe - P = -m[tex]a_{y}[/tex]
the minus sign we use to indicate that the object is going down
Using the Hooke's law:
Fe = k*x    where x is the spring compression
k*x - m*g = m[tex]a_{y}[/tex]
[tex]a_{y}[/tex] = [tex]\frac{k*x - m*g}{m}[/tex]
[tex]a_{y}[/tex] = [tex]\frac{200*0.04 - 2*9.8}{2}[/tex]
[tex]a_{y}[/tex] = 5.8[tex]\frac{m}{s^{2} }[/tex]
[tex]V^{2} = Vo^{2} + 2*a_{y} *(X - Xo)[/tex]
Vo = o[tex]\frac{m}{s}[/tex]
Xo = 0m
[tex]V^{2} = 0 + 2*5.8 *(4)[/tex]
[tex]V^{2} = 46.4[/tex]
V = 6.81[tex]\frac{m}{s}[/tex]