Respuesta :

Answer:

The value of x is 2

Step-by-step explanation:

* Lets explain how to find a distance between 2 points

- If the endpoints of a segment are [tex](x_{1},y_{1})[/tex] and

 [tex](x_{2},y_{2})[/tex] is [tex]d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

- Triangle ABC has a perimeter of 12 units

∵ The perimeter of any triangle is the sum of lengths of its sides

∴ P Δ ABC = AB + BC + AC

* Lets find the length of the three sides

∵ A = (x , 2) , B = (2 , -2) , C = (-1 , 2)

∵ [tex]AB=\sqrt{(2-x)^{2}+(-2-2)^{2}}[/tex]

∴ [tex]AB=\sqrt{(2-x)^{2}+(-4)^{2}}[/tex]

∴ [tex]AB=\sqrt{(2-x)^{2}+16}[/tex]

∵ [tex]BC=\sqrt{(-1-2)^{2}+(2--2)^{2}}[/tex]

∴ [tex]BC=\sqrt{(-3)^{2}+(4)^{2}}[/tex]

∴ [tex]BC=\sqrt{9+16}[/tex]

∴ [tex]BC=\sqrt{25}[/tex]

∴ BC = 5

∵ [tex]CA=\sqrt{(x--1)^{2}+(2-2)^{2}}[/tex]

∴ [tex]CA=\sqrt{(x+1)^{2}+(0)^{2}}[/tex]

∴ [tex]CA=\sqrt{(x+1)^{2}}[/tex]

- The √ is canceled by power 2

∴ CA = (x + 1)

∵ AB + BC + CA = 12

∴ [tex]\sqrt{(2-x)^{2}+16}[/tex] + 5 + (x + 1) = 12

- Add 5 and 1

∴ [tex]\sqrt{(2-x)^{2}+16}[/tex] + 6 + x = 12

- subtract 6 and x from both sides

∴ [tex]\sqrt{(2-x)^{2}+16}[/tex] = (6 - x)

- To cancel (√ ) square the two sides

∴ (2 - x)² + 16 = (6 - x)²

- Simplify the two sides

∴ [(2)(2) + (2)(2)(-x) + (-x)(-x)] + 16 = (6)(6) + (2)(6)(-x) + (-x)(-x)

∴ 4 - 4x + x² + 16 = 36 - 12x + x²

- Subtract x² from both sides

∴ 20 - 4x = 36 - 12x

- Add 12x to both sides and subtract 20 from both sides

∴ 12x - 4x = 36 - 20

∴ 8x = 16

- Divide both sides by 8

∴ x = 2

* The value of x is 2