Respuesta :
Answer:
The flow is turbulent at both the parts of the tube.
Explanation:
Given: Â
Water is flowing in circular tube. Â
Inlet diameter is [tex]d_{1}= 2[/tex]m. Â
Outlet diameter is [tex]d_{2}= 3[/tex]m. Â
Inlet velocity is [tex]V_{1}= 3[/tex] m/s. Â
Kinematic viscosity is [tex]\nu =1.24\times  10^{-6}[/tex] m²/s. Â
Concept:
Apply continuity equation to find the velocity at outlet. Â
Apply Reynolds number equation for flow condition. Â
Step1 Â
Apply continuity equation for outlet velocity as follows: Â
[tex]A_{1}V_{1}=A_{2}V_{2}[/tex] Â
[tex]\frac{\pi}{4}d^{2}_{1}V_{1}=\frac{\pi}{4}d^{2}_{2}V_{2}[/tex] Â
Substitute the values in the above equation as follows: Â
[tex]\frac{\pi}{4}2^{2}\times 3=\frac{\pi}{4}3^{2}V_{2}[/tex] Â
[tex]2^{2}\times 3=3^{2}V_{2}[/tex] Â
[tex]V_{2}=\frac{4}{3}[/tex] m/s. Â
Step2
Apply Reynolds number formula for the flow condition at inlet as follows: Â
[tex]Re=\frac{v_{1}d_{1}}{\nu }[/tex] Â
[tex]Re=\frac{2\times 3}{1.24\times  10^{-6}}[/tex] Â
Re=4838709.677 Â
Apply Reynolds number formula for the flow condition at outlet as follows: Â
[tex]Re=\frac{v_{2}d_{2}}{\nu }[/tex] Â
[tex]Re=\frac{\frac{4}{3}\times 3}{1.24\times 10^{-6}}[/tex] Â
Re=3225806.452 Â
Thus, the Reynolds number is greater than 2000. Hence the flow is turbulent. Â
Hence, the flow is turbulent at both the parts of the tube. Â