Answer:
179.4306 g
Explanation:
Given that:
Mass of [tex]Bi_2O_3[/tex] = 198 g
Molar mass of [tex]Bi_2O_3[/tex] = 465.96 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{198\ g}{465.96\ g/mol}[/tex]
[tex]Moles\ of\ Bi_2O_3= 0.4293\ mol[/tex]
From the balanced reaction,
[tex]Bi_2O_3+3C\rightarrow 2Bi+3CO[/tex]
1 mole of [tex]Bi_2O_3[/tex] on reaction produces 2 moles of bismuth
So,
0.4293 mole of [tex]Bi_2O_3[/tex] on reaction produces 2 × 0.4293 moles of bismuth
Moles of bismuth = 0.8586 moles
Molar mass of bismuth = 208.9804 g/mol
So, mass of bismuth = Moles × Molar mass = 0.8586 × 208.9804 g = 179.4306 g