Answer:
The Height of the tower is 188.67 ft
Step-by-step explanation:
Given as :
The angle of elevation to tower = 15°
The distance travel closer to tower the elevation changes to 42° = 497 ft
Now, Let the of height of tower = h  ft
The distance between 42°  and  foot of tower = x  ft
So, The distance between 15° and  foot of tower =  ( x + 497 )  ft
So, From figure :
In Δ ABC
Tan 42° = [tex]\frac{perpendicular}{base}[/tex]
Or , Tan 42° = [tex]\frac{AB}{BC}[/tex]
Or, Â 0.900 = [tex]\frac{h}{x}[/tex]
∴ h = 0.900 x
Again :
In Δ ABD
Tan 15° = [tex]\frac{perpendicular}{base}[/tex]
Or , Tan 15° = [tex]\frac{AB}{BD}[/tex]
Or, Â 0.267 = [tex]\frac{h}{( x + 497 )}[/tex]
Or,  h = ( x + 497 ) × 0.267
So, from above two eq  :
   0.900 x =  ( x + 497 ) × 0.267 Â
Or, 0.900 x - 0.267 x =  497  × 0.267 Â
So, 0.633 x = 132.699
∴        x = [tex]\frac{132.699}{0.633}[/tex]
Or, Â Â Â Â Â Â x = 209.63 Â ft
So, The height of tower = h = 0.900 × 209.63
Or, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â h = 188.67 ft
Hence The Height of the tower is 188.67 ft   Answer