Answer:
[tex]v_f=0.408m/s[/tex]
Explanation:
The radiation pressure creates a force on the block
[tex]F_r=_{pr}A[/tex]
Where A is the area of the beam so using the force the creates can determinate the acceleration
[tex]F=m*a[/tex]
[tex]a=\frac{Fr}{m}=\frac{_{pr}A}{m}[/tex]
The acceleration is constant so can find the velocity using the equation for a uniform motion, also that the force can be the power of the laser plugging in the number so:
[tex]_{pr}A=\frac{P}{c}=\frac{25.0MW}{3x10^8}[/tex]
[tex]v_f^2=v_i^2+2*a*x_t[/tex]
The initial velocity is zero:
[tex]v_f^2=2*a*x_t[/tex]
[tex]v_f=\sqrt{2*a*x_t}[/tex]
replacing a'
[tex]v_f=\sqrt{\frac{2*P*x_t}{m*c}}[/tex]
[tex]v_f=\sqrt{\frac{2*25x10^6W*100m}{100kg*(3x10^8)}}[/tex]
[tex]v_f=\sqrt{0.166 m^2/s^2}=0.408m/s[/tex]