Respuesta :
Answer:
a. Â STOCK A
State of nature  R(%)      P     ER       R-ER     R - ER2.P     Â
Recession      0.010    0.20   0.002    -0.1015   0.00206045
Normal         0.090   0.55   0.0495   -0.0215   0.0002542375
Boom          0.240    0.25   0.06     0.1285   0.0041280625                          Â
                         ER  0.1115    Variance 0.00644275  Â
STOCK B Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
State of nature  R(%)      P      ER     R - ER     R - ER2.P         Â
Recession     -0.35     0.20   -0.07    -0.5375   0.05778125                                                                                                                                    Â
Normal        0.25     0.55   0.1375   0.0625   0. 0021484375
Boom         0.48      0.25   0.12     0.2925   0.021389062                                                                                                                                                                                        Â
                       ER    0.1875   Variance  0.08131875 Â
Expected return of stock A = 0.1115 Â = 11.15%
Expected return of stock  B = 0.1875 = 18.75%
b.  Standard deviation of stock A = √0.00644275 = 0.0802                               Â
Standard deviation of stock B = √0.08131875= 0.2852                    Â
                                                                                                                                                                                                                                                                                                                                             Â
Explanation:
In the first case, there is need to calculate the expected return                                                                                                                                                                          of each stock by multiplying the return by probability.
In the second case, we need to obtain the variance. The square root of variance gives the standard deviation. Variance is calculated by deducting the expected return from the actual return, then, raised the     difference by power 2 multiplied by probability.                                                                                                                                  Â