Find the volume of the solid of revolution formed by rotating about the x--axis the region bounded by the given curves.
f(x)=x^2/2, y=0, x=0, x=4.

Respuesta :

Answer:

[tex]51.2\pi[/tex]

Step-by-step explanation:

We are given: [tex]f(x)=\frac{x^2}{2}[/tex]

So, we will use integral to calculate the volume.

[tex]V = \pi\int\limits^4_0 (\frac{x^2}{2})^2dx =\pi\int\limits^4_0 \frac{x^4}{4}dx =\pi\frac{x^5}{20}|^4_0=51.2\pi[/tex]