The function in Exercise represents the rate of flow of money in dollars per year. Assume a 10-year period at 8% compounded continuously and find the following: (a) the present value; (b) the accumulated amount of money flow at t=10.
f(t)=2000

Respuesta :

Answer:

a) [tex]P= $56,972.5[/tex]

b) [tex]A=$1,26,792.3[/tex]

Step-by-step explanation:

Given Data:

Interest rate=[tex]r= 0.08[/tex]  per year

No. of years=[tex]t=10[/tex]

Rate of continuous money flow is given by the function

[tex]f(t)=2000[/tex]

a) to find the present value of money

[tex]P=\int\limits^n_0 {f(t)e^{-rt} } \, dt[/tex]

Put f(t)=2000 and n=10 years and r=0.08

[tex]P=\int\limits^n_0 {2000e^{-0.08t} } \, dt[/tex]

Now integrate

[tex]P= {2000(\frac{e^{-0.08t}}{-0.08} )[/tex]

[tex]P= -\frac{2000}{0.08} (e^{-0.08*10}-e^{-0.08*0})[/tex]

[tex]P= -\frac{2000}{0.08} (e^{-0.8}-e^{0})[/tex]

[tex]P= -\frac{2000}{0.08} (0.4493-2.7282)[/tex]

[tex]P= -\frac{2000}{0.08} (-2.2789)[/tex]

[tex]P= -25000(-2.2789)[/tex]

[tex]P= $56972.5[/tex]

(b) to find the accumulated amount of money at t=10

[tex]A=P(e^{rt} )[/tex]

Where P is the present worth already calculated in part a

[tex]A=56972.5(e^{0.08*10} )[/tex]

[tex]A=56972.5(e^{0.8} )[/tex]

[tex]A=56972.5(2.2255 )[/tex]

[tex]A=$1,26,792.3[/tex]