Answer:
[tex]y + 10 = \frac{1}{4 } (x + 12)[/tex]
Or
[tex]y =\frac{1}{4 } x -7[/tex]
Step-by-step explanation:
We need to find the slope using the points (-4,5) and (8,8).
The slope formula is given by:
[tex]m= \frac{y_2 -y_1 }{x_2 -x_1 } [/tex]
We plug in the values to get:
[tex]m = \frac{8 - 5}{8 - - 4} [/tex]
[tex]m = \frac{3}{12} = \frac{1}{4} [/tex]
Parallel lines have the same slope.
Using the point slope formula, the equation is given by:
[tex]y -y_1 = m(x -x_1 )[/tex]
We substitute the point (-12,-10) to get;
[tex]y - - 10 = \frac{1}{3} (x - - 12)[/tex]
[tex]y + 10 = \frac{1}{4 } (x + 12)[/tex]
Or
[tex]y =\frac{1}{4 } x -7[/tex]