Answer:
 y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
                 dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
                dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
                dy/dx = v + x*dv/dx
- Combine the two equations:
                v + x*dv/dx = 0.5*(1/v) + 2.5*v
                x*dv/dx = 0.5*(1/v) + 1.5*v
                x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
                 (2v.dv / (v^2 + 1) = dx / x Â
- Integrate both sides:
                 Ln (v^2 + 1) = Ln(x) + C
                 v^2 + 1 = Cx
                 v = sqrt(Cx - 1)
- Back substitution:
                (y/x) = sqrt(Cx - 1)
                y = x*sqrt(Cx - 1)
            Â