Answer:
WACC = 15.07%
Explanation:
We are given with several information. To solve for WACC we just need to solve for he cost of debt whih, is the discount rate the will make the coupon and maturity present value match the market value:
C 95 Â ( 1,000 x 9.5%)
time 10
rate 0.099879843
[tex]95 \times \frac{1-(1+0.0998798425426551)^{-10} }{0.0998798425426551} = PV\\[/tex] Â
PV $584.0353 Â
Â
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex] Â
Maturity  1,000.00 Â
time  10.00 Â
rate  0.099879843
[tex]\frac{1000}{(1 + 0.0998798425426551)^{10} } = PV[/tex] Â
PV Â 385.96 Â
Â
PV c $584.0353 Â
PV m  $385.9647 Â
Total $970.0000 Â
Now that we got the cost of debt we can solve for the WACC as the rest are givens:
[tex]WACC = K_e(\frac{E}{E+D}) + K_d(1-t)(\frac{D}{E+D})[/tex]
[tex]WACC = 0.16(0.885478158205431) + 0.099879843(1-0.21)(0.114521841794569)[/tex]
WACC 15.07129%
D Â 194,000,000 Â
E Â 1,500,000,000 Â
V Â 1,694,000,000 Â
[tex]WACC = 0.16(0.885478158205431) + 0.099879843(1-0.21)(0.114521841794569)[/tex]
WACC = 15.07%