Answer:
efficiency = 0.71999 Â < Â Â 0.78148 Â
efficiency = 0.7999  ≈   0.78148 Â
Explanation:
given data
Hot reservoir Temp Th = 1350 K
Cold reservoir Temp Tc = 295 K
heat transfer rate  = 150,000 kJ/h
solution
first we get here maximum possible efficiency that is express as
maximum possible efficiency = 1 - Â [tex]\frac{Tc}{Th}[/tex] Â ..........1
put here value  and we get
maximum possible efficiency = 1 - [tex]\frac{295}{1350}[/tex]
maximum possible efficiency = 0.78148 Â
and
efficiency = [tex]\frac{Wout}{Qin}[/tex] Â .................2
here Qin = [tex]\frac{150000}{3600}[/tex] Â = 41.667
so put here value in equation 2 we get
efficiency = [tex]\frac{30}{41.667}[/tex] Â
efficiency = 0.71999 Â < Â Â 0.78148 Â
and
efficiency = [tex]\frac{33.33}{41.667}[/tex] Â
efficiency = 0.7999  ≈   0.78148 Â
claim might be true or not because there always be looser