Suppose that two cards are randomly selected from a standard​ 52-card deck. ​(a) What is the probability that the first card is a clubclub and the second card is a clubclub if the sampling is done without​ replacement? ​(b) What is the probability that the first card is a clubclub and the second card is a clubclub if the sampling is done with​ replacement?

Respuesta :

Answer:

(a)[tex]\frac{1}{17}[/tex] (b) [tex]\frac{1}{16}[/tex]

Step-by-step explanation:

GIVEN: Suppose that two cards are randomly selected from a standard​ [tex]52[/tex] card deck.

TO FIND: (a) What is the probability that the first card is a club and the second card is a club if the sampling is done without​ replacement? ​(b) What is the probability that the first card is a club and the second card is a club if the sampling is done with​ replacement.

SOLUTION:

(a)

Probability that first card is club [tex]P(A)=\frac{\text{total club cards}}{\text{total cards}}[/tex]

                                                   [tex]=\frac{13}{52}[/tex]

                                                   [tex]=\frac{1}{4}[/tex]

As sampling is done without replacement.

probability that second card is club  [tex]P(B)=\frac{\text{total club cards}}{\text{total cards}}[/tex]

                                                            [tex]=\frac{12}{51}[/tex]

                                                            [tex]=\frac{4}{17}[/tex]

Probability that first card is club and second card is club [tex]=P(A)\times P(B)[/tex]

                                                                                             [tex]=\frac{1}{4}\times\frac{4}{17}=\frac{1}{17}[/tex]

(b)

Probability that first card is club [tex]P(A)=\frac{\text{total club cards}}{\text{total cards}}[/tex]

                                                   [tex]=\frac{13}{52}[/tex]

                                                   [tex]=\frac{1}{4}[/tex]

As sampling is done with replacement.

probability that second card is club  [tex]P(B)=\frac{\text{total club cards}}{\text{total cards}}[/tex]

                                                            [tex]=\frac{13}{52}[/tex]

                                                            [tex]=\frac{1}{4}[/tex]

Probability that first card is club and second card is club [tex]=P(A)\times P(B)[/tex]

                                                                                             [tex]=\frac{1}{4}\times\frac{1}{4}=\frac{1}{16}[/tex]