Question 2 options: A fence must be built to enclose a rectangular area of 45,000 ft2. Fencing material costs $4 per foot for the two sides facing north and south and $8 per foot for the other two sides. Find the length and width that will produce the least expensive fence.

Respuesta :

Answer:

The length that would produce the least expenses is  [tex]A= 300 ft[/tex]

The width  that would produce the least expenses is  [tex]B= 150 ft[/tex]

Step-by-step explanation:

From the question we are told that the

           Required area to enclose is [tex]A = 45,000 ft^2[/tex]

            Fencing material cost is [tex]C =[/tex]$4 per foot for north and south

            Fencing material cost for east and west [tex]C_{E/W} =[/tex] $8

The diagram for this question is shown on the first uploaded image

      From the diagram is mathematically evaluated as

                             AB = 45000

                    =>        [tex]B = \frac{45000}{A}[/tex]

The overall cost of building this fence is

                [tex]T = 2 A (4) + 2(B)(8)[/tex]

Substituting for B in the equation above

                [tex]T = 8A +16 (\frac{45000}{A} )[/tex]

differentiating both sides with respect to x

              [tex]T' (A) = 8 - \frac{16 *45000}{A^2}[/tex]

At minimum possible cost  [tex]T'(A) = 0[/tex]

              => [tex]8 - \frac{16 *45000}{A^2} = 0[/tex]

                  [tex]8A^2 = 16*45000[/tex]

                   [tex]A^2 = \frac{16*45000}{8}[/tex]

                    [tex]A = \sqrt{\frac{ 16*45000}{8} }[/tex]

                      [tex]= 300 ft[/tex]

Then B is mathematically evaluate as

                 [tex]B = \frac{45000}{300}[/tex]

                     [tex]= 150 ft[/tex]

Then the maximum is mathematically evaluated as

                [tex]T = 8 (300) + 16(150)[/tex]

                     =$4800          

 

Ver imagen okpalawalter8