contestada

The rate constant for a first order reaction is 0.060s-1. when the temperature is increased from 298K to 331 K , the rate constant increases to 0.18s-1. Calculate the activation energy for this reaction. Use kJ/mol for the units. The activation energy in kJ/mol equals (include the units in your answer):

Respuesta :

Answer:

27.3 kJ/mol

Explanation:

You would use the Arrhenius Equation to solve this problem.

[tex]ln(\frac{k_{2} }{k_{1} } )=\frac{E_{a} }{R} (\frac{1}{T_{1} } -\frac{1}{T_{2} } )[/tex]

Plug the rate constants into k1 and k2.  Plug the temperatures into T1 and T2. R is a constant and is equal to 8.314.  Solve for Ea.

Your answer should be 27,303.03 J/mol or 27.3 kJ/mol.

Hope this helps! <3

The activation energy will be equal to "12.40 kJ/mol". To understand the calculation, check below.

Activation energy

According to the question,

For 1st order, rate constant = 0.060 s⁻¹

Temperature, T₁ = 298 K

                       T₂ = 331 K

Increased rate constant = 0.18s⁻¹

We know the formula,

→ ln k = ln A - [tex]\frac{E_a}{RT}[/tex]

By substituting the rate constant value,

  ln 0.06 = ln A - [tex]\frac{E_a}{298 \ R}[/tex] ...(equation 1)

  ln 0.18 = ln A - [tex]\frac{E_a}{318 \ R}[/tex] ...(equation 2)

From "equation 1 and 2", we get

Activation energy, 1.09 = [tex]\frac{83 \ E_a}{113538 \ R}[/tex]

                                  [tex]E_a[/tex] = 12.40 kJ/mol

Thus the above answer is correct.

Find out more information about activation energy here:

https://brainly.com/question/24749252

Otras preguntas