β–³XYZ has vertices X(0,βˆ’2), Y(1,4), and Z(5,3). Which of the following represents the translation of β–³XYZ along vector <3,βˆ’4> and its reflection across the x-axis?
PLEASE HELP!!!
Answers:

Xβ€Š(0, βˆ’2) β†’ Xβ€Šβ€²(3, βˆ’4) β†’ Xβ€Šβ€³(βˆ’4, 3);
Yβ€Š(1, 4) β†’ Yβ€Šβ€²(4, 0)β†’ Yβ€Šβ€³(0, 4);
Zβ€Š(5, 3)β†’ Zβ€Šβ€²(8, 7)β†’ Zβ€Šβ€³(βˆ’7, 8)

Xβ€Š(0, βˆ’2) β†’ Xβ€Šβ€²(3, 2) β†’ Xβ€Šβ€³(βˆ’2, 3);
Yβ€Š(1, 4) β†’ Yβ€Šβ€²(4, 8) β†’ Yβ€Šβ€³(βˆ’8, 4);
Zβ€Š(5, 3) β†’ Zβ€Šβ€²(8, 1) β†’ Zβ€Šβ€³(βˆ’8, 1)

X (0, βˆ’2) β†’ Xβ€Šβ€²(3, βˆ’6) β†’ Xβ€Šβ€³(3, 6);
Y (1, 4) β†’ Yβ€Šβ€²(4, 0) β†’ Yβ€Šβ€³(4, 0);
Zβ€Š(5, 3)β†’ Zβ€Šβ€²(8, βˆ’1)β†’ Zβ€Šβ€³(8, 1)

Xβ€Š(0, βˆ’2) β†’ Xβ€Šβ€²(0, 8) β†’ Xβ€Šβ€³(0, βˆ’8);
Yβ€Š(1, 4) β†’ Yβ€Šβ€²(3, βˆ’16) β†’ Yβ€Šβ€³(3, 16);
Zβ€Š(5, 3) β†’ Zβ€Šβ€²(15, 12) β†’ Zβ€Šβ€³(15, βˆ’12)

Respuesta :

Answer:

X (0, βˆ’2) β†’ Xβ€Šβ€²(3, βˆ’6) β†’ Xβ€Šβ€³(3, 6);

Y (1, 4) β†’ Yβ€Šβ€²(4, 0) β†’ Yβ€Šβ€³(4, 0);

Zβ€Š(5, 3)β†’ Zβ€Šβ€²(8, βˆ’1)β†’ Zβ€Šβ€³(8, 1)

Explanation:

use the rule for reflection: (x,y)β†’(x,βˆ’y)

X'(3,βˆ’6)β†’X''(3,6).

Y'(4,0)β†’Y''(4,0).

Z'(8,βˆ’1)β†’Z''(8,1).

X(0,βˆ’2)β†’X'(3,βˆ’6)β†’X''(3,6)

Y(1,4)β†’Y'(4,0)β†’Y''(4,0)

Z(5,3)β†’Z'(8,βˆ’1)β†’Z''(8,1)

Answer:

X (0, βˆ’2) β†’ Xβ€Šβ€²(3, βˆ’6) β†’ Xβ€Šβ€³(3, 6);

Y (1, 4) β†’ Yβ€Šβ€²(4, 0) β†’ Yβ€Šβ€³(4, 0);

Zβ€Š(5, 3)β†’ Zβ€Šβ€²(8, βˆ’1)β†’ Zβ€Šβ€³(8, 1)

Explanation:

Use the translation vector <3, βˆ’4> Β to determine the rule for translation of the coordinates: (x, y) β†’ (x + 3, y +(βˆ’4)).

Apply the rule to translate vertices X (0, βˆ’2), Y (1, 4), and Z (5, 3).

X (0, βˆ’2) β†’ (0 + 3, βˆ’2 + (βˆ’4)) β†’ X' (3, βˆ’6).

Y (1, 4) β†’ (1 + 3, 4 + (βˆ’4)) β†’ Y' (4, 0).

Z (5, 3) β†’ (5 + 3, 3 + (βˆ’4)) β†’ Z' (8, βˆ’1).

To apply the reflection across x-axis use the rule for reflection: (x, y) β†’ (x, βˆ’y).

Apply the reflection rule to the vertices of β–³X'Y'Z'.

X ' (3, βˆ’6) β†’ X '' (3, 6).

Y ' (4, 0) β†’ Y '' (4, 0).

Z' (8, βˆ’1) β†’ Z '' (8, 1).

Therefore,

X (0, βˆ’2) β†’ X' (3, βˆ’6) β†’ X'' (3, 6)

Y (1, 4) β†’ Y' (4, 0) β†’ Y'' (4, 0)

Z (5, 3) β†’Z' (8, βˆ’1) β†’ Z'' (8, 1)

represents the translation of β–³XYZ along vector <3, βˆ’4> Β and its reflection across the x-axis.