Respuesta :
Answer:
the answer is in the explanation
Step-by-step explanation:
we are given
     sample size [tex]n_{1} = n_{2}[/tex] = 10  for each formulation
     mean  [tex]\bar{x} _{1}[/tex] (formulation 1) = 121
     mean [tex]\bar{x} _{2}[/tex]  (formulation 2) = 112
     s (standard deviation )  =  8 mins for  each case
    null hypothesis     [tex]H_{0}[/tex]     μ2 = μ1     (both have average same time)
 alternative hypothesis  [tex]H_{1}[/tex]     μ2 < μ1
     under [tex]H_{0}[/tex]  the test statistics is
                [tex]t = \frac{\bar{x}_{2} - \bar{x}_{1} }{s\sqrt{\frac{1}{n_{1} }+ \frac{1}{n_{1}} } }[/tex]
                [tex]t = \frac{112 - 121 }{8\sqrt{\frac{1}{10 }+ \frac{1}{10} } }[/tex]
                t = -2.5
            ItI = 2.5
      The P-value at  ItI = 2.5    at [tex]\alpha[/tex] = 0.05   μ = 0.010699
check the remaining solution and diagram in the attached image
