Respuesta :

Problem 11

Answer: -4x^2 - 6  (choice 3)

Work Shown:

P = 4x^2-x+1

Q = -6x^2+x-4

P+Q = sum of P and Q

P+Q = (4x^2-x+1)+(-6x^2+x-4)

P+Q = (4x^2-6x^2)+(-x+x)+(1-4)

P+Q = -2x^2+0x-3

P+Q = -2x^2 - 3

2*(P+Q) = twice the sum of P and Q

2*(P+Q) = 2*(-2x^2 - 3)

2*(P+Q) = 2(-2x^2) + 2(-3)

2*(P+Q) = -4x^2 - 6

======================================================

Problem 12

Answer: 6x^3 + 4x^2 - 34  (choice 1)

Work Shown:

y = 3x^3 + x^2 - 5

z = x^2 - 12

2(y+z) = 2(3x^3 + x^2 - 5      +   x^2-12)

2(y+z) = 2(3x^3 + 2x^2 - 17)

2(y+z) = 2(3x^3) + 2(2x^2) + 2(-17)

2(y+z) = 6x^3 + 4x^2 - 34

Answer:

11. 3

12. 1

Step-by-step explanation:

11.

[tex](4x^2-x+1)+(-6x^2+x-4)\\4x^2-x+1-6x^2+x-4\\-2x^2-3[/tex]

Double that

[tex](2)(-2x^2-3)\\-4x^4-6[/tex]

----------------------------------------------------------

12.

[tex]y=3x^3+x^2-5\\z=x^2-12[/tex]

[tex]2(y+z)\\2(3x^3+x^2-5+x^2-12)\\2(3x^3+2x^2-17)\\6x^3+4x^2-34[/tex]