Respuesta :
Complete Question
The complete question is shown on the first uploaded image Â
Answer:
a
 The test statistic for μ1 - μ2 is  [tex]\= x_1 - \= x_2 = 40[/tex]
b
 The standardized test statistic for μ1 - μ2 is  [tex]z = 2.5[/tex]
c
 No
d
  Fail to reject null hypothesis  [tex]H_O : \mu_1 \ge \mu_2 ; H_a : \mu_1 < \mu_2[/tex] At the 1% significance level , there is insufficient evidence to support the claim
Step-by-step explanation:
From the question we are told that
The given data is Â
     [tex]\= x_1 = 1240[/tex]
     [tex]\= x_2 = 1200[/tex]
      [tex]n_1 = 40[/tex]
      [tex]\alpha = 0.01.[/tex]
     [tex]n_2 = 80.[/tex]
      [tex]\sigma 1 = 65 \ and\ \sigma2 = 110.[/tex]
Now the test statistic is mathematically evaluated as
      [tex]\= x_1 - \= x_2 = 1240 -1200[/tex]
     [tex]\= x_1 - \= x_2 = 40[/tex]
 The standardized test​ statistic is mathematically represented as
    [tex]z = \frac{\= x_1 - \= x_2}{\sqrt{\frac{\sigma_1^2}{n_1} } + \frac{\sigma_2^2}{n_2} }[/tex]
substituting values
   [tex]z = \frac{\= 1240 - \= 1200}{\sqrt{\frac{65^2}{40} } + \frac{110^2}{80} }[/tex]
   [tex]z = 2.5[/tex]
Now  the standardized test​ statistic is not in the rejection region because the z value of  [tex]\alpha[/tex]  is  2.33 and  the standardized test​ statistic  is greater than that hence it is not in the rejection region
This implies that the test statisties failed to reject the null hypothesis at significance level of 0.01 , there insufficient evidence to support the claim
