Answer:
[tex]\displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx = \frac{100}{3}[/tex]
General Formulas and Concepts:
Calculus
Integration
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx[/tex]
Step 2: Integrate
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration