Respuesta :

Answer:

[tex]m = 2[/tex]

[tex]n = 3[/tex]

Step-by-step explanation:

Given

[tex](2x^ny^2)^m = 4x^6y^4[/tex]

Required

Solve for m and n

Start by opening the bracket using laws of indices

[tex]2^mx^{n*m}y^{2*m} = 4x^6y^4[/tex]

Express 4 as 2²

[tex]2^mx^{n*m}y^{2*m} = 2^2x^6y^4[/tex]

Compare both sides of the equation, we have:

[tex]2^m = 2^2[/tex] --- (1)

[tex]x^{n*m} = x^6[/tex] --- (1)

[tex]y^{2*m} = y^4[/tex]  ---- (2)

In (1)

[tex]2^m = 2^2[/tex]

2 cancels out on both sides; so, we have

[tex]m =2[/tex]

In (2)

[tex]x^{n*m} = x^6[/tex]

x cancels out on both sides; so, we have

[tex]n * m = 6[/tex]

Substitute 2 for m

[tex]2 * n = 6[/tex]

Divide through 2

[tex]n = 3[/tex]

In (3)

[tex]y^{2*m} = y^4[/tex]

y cancels out on both sides; so, we have

[tex]2 * m = 4[/tex]

Divide through 2

[tex]m = 2[/tex]