Answer:
Range  = (237100, 292900)
Step-by-step explanation:
Using Chebyshevs Inequality:
[tex]P(|X - \mu | \le k \sigma )\ge 1 -\dfrac{1}{k^2}= 0.889[/tex]
[tex]1 -\dfrac{1}{k^2}= 0.889[/tex]
[tex]\dfrac{1}{k^2}= 1- 0.889[/tex]
[tex]\dfrac{1}{k^2}=0.111[/tex]
[tex]k = \sqrt{\dfrac{1}{0.111}}[/tex]
[tex]k \simeq 3[/tex]
Thus, 88.9% of the population is within 3 standard deviation of the mean with the Range = μ  ±  kσ
where;
μ = 265000
σ = 9300
Range = 265000  ±  3(9300)
Range = 265000  ± 27900
Range = Â (265000 - 27900, 265000 + 27900)
Range  = (237100, 292900)