Respuesta :
Answer:
[tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Calculus
Derivatives
Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
eˣ Derivative: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \frac{d}{dx}[e^{2x}][/tex]
Step 2: Differentiate
- [Derivative] eˣ Derivative [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2x^{1 - 1} \cdot e^{2x}[/tex]
- [Derivative] Simplify: [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2x^{0} \cdot e^{2x}[/tex]
- [Derivative] Simplify: [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2(1) \cdot e^{2x}[/tex]
- [Derivative] Multiply: [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2 \cdot e^{2x}[/tex]
- [Derivative] Multiply: [tex]\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e