Respuesta :
Answer:
Explanation:
The cost index can be calculated as follows:
In 2019:
= 260400/248000
= 1.05
In 2020:
= 347300/302000
= 1.15
In 2021:
= 350400/292000
= 1.2
Inventory Layers converted to the base cost
Date     [tex]\text{(Inventory at } \ \ \ \ \ \ \ \ \text{(year-end } \\ \\ \text{ year end cost) } \div \ \ \ \text{cost index) } = \ \ \ \ \ \ \ \text{ Inventory layers(base year cost) }[/tex]
12/31/20  201000       ÷     1        =      201000
12/31/20  260400       ÷     1.05      =      248000
12/31/20  347300       ÷     1.15      =       302000
12/31/20   350400      ÷     1.2       =       292000
Inventory Layers converted to cost          Ending Inventory  DVL cost
[tex]\text{(Inventory layers } \ \ \text{("year-end } \\ \\ \text{ base year cost) } \times \text{ cost index") } = \ \ \text{ Inventory layers(cost) }[/tex]
Base
201000       ×     1         = 201000
201000       ×     1         = 201000
Dec 31, 2019
47000        ×     1.05      = 49350                  Â
ADD Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 250350 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
Base
201000       ×     1         = 201000
Dec 31, 2019
47000        ×     1.05      = 49350
Dec 31, 2020
(302000 - 248000)
= 54000      ×     1.15       = 62100         Â
ADD Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 312450 Â Â Â Â Â Â Â Â Â
Base
201000       ×     1         = 201000
Dec 31, 2019
47000        ×     1.05      = 49350
Dec 31, 2021
(292000 - 248000)
= 44000      ×     1.15       =  50600    Â
ADD Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 300950 Â Â Â Â