Respuesta :
Answer:
a) A = 1.50 m / s²,  B = 1.33 m/s³,  b) a = 12.1667 m / s²,
c)  I = M (1.5 t + 1.333 t²) ,  d)  ΔI = M 2.833  N
Explanation:
In this exercise give the expression for the speed of the rocket
     v (t) = A t + B t²
and the initial conditions
     a = 1.50 m / s² for t = 0 s
     v = 2.00 m / s for t = 1.00 s
a) it is asked to determine the constants.
Let's look for acceleration with its definition
     a = [tex]\frac{dv}{dt}[/tex]
     a = A + 2B t
we apply the first condition t = 0 s
     a = A
     A = 1.50 m / s²
we apply the second condition t = 1.00 s
     v = 1.5 1 + B 1²
     2 = 1.5 + B
     B = 2 / 1.5
     B = 1.33 m/s³
the equation remains
      v = 1.50 t + 1.333 t²
b) the acceleration for t = 4.00 s
      a = 1.50 + 1.333 2t
      a = 1.50 + 2.666 4
      a = 12.1667 m / s²
c) The thrust
      I = ∫ F dt = p_f - p₀
     Â
Newton's second law
     F = M a
     F = M (1.5 + 2 1.333 t) dt
     Â
we replace and integrate
     I = M ∫ (1.5 + 2.666 t) dt
     I = 1.5 t + 2.666 t²/2
     I = M (1.5 t + 1.333 t²) + cte
in general the initial rockets with velocity v = 0 for t = 0, where we can calculate the constant
     cte = 0
     I = M (1.5 t + 1.333 t²)
d) the initial push
For this we must assume some small time interval, for example between
t = 0 s and t = 1 s
    ΔI = I_f - I₀
    ΔI = M (1.5 1 + 1.333 1²)
    ΔI = M 2.833  N