An oil tanker spills oil that spreads in a circular pattern whose radius increases at a rate of 15 ft/min. Let A be the area of the circle and r be the radius of the circle. How fast is the area increasing when the radius is 30 feet

Respuesta :

Answer:

[tex]2827.4 \dfrac{ft}{s}[/tex]

Step-by-step explanation:

[tex] A = \pi r^2 [/tex]

[tex] \dfrac{dA}{dt} = 2 \pi r \dfrac{dr}{dt} [/tex]

[tex] \dfrac{dA}{dt} = 2 \times \pi \times 30~ft \times 15 \dfrac{ft}{s} [/tex]

[tex] \dfrac{dA}{dt} = 2827.4 \dfrac{ft}{s} [/tex]