Answer:
Step-by-step explanation:
Using the section formula, if a point (x,y) divides the line joining the points (x Â
1
​
,y Â
1
​
) and (x Â
2
​
,y Â
2
​
) in the ratio m:n, then Â
(x,y)=( Â
m+n
mx Â
2
​
+nx Â
1
​
Â
​
, Â
m+n
my Â
2
​
+ny Â
1
​
Â
​
)
The vertices of the triangle are given to be (x Â
1
​
,y Â
1
​
),(x Â
2
​
,y Â
2
​
) and (x Â
3
​
,y Â
3
​
). Let these vertices be A,B and C respectively. Â
Then the coordinates of the point P that divides AB in l:k will be
( Â
l+k
lx Â
2
​
+kx Â
1
​
Â
​
, Â
l+k
ly Â
2
​
+ky Â
1
​
Â
​
)
The coordinates of point which divides PC in m:k+l will be Â
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧
​
Â
m+k+l
mx Â
3
​
+(k+l) Â
(l+k)
lx Â
2
​
+kx Â
1
​
Â
​
Â
​
, Â
m+k+l
my Â
3
​
+(k+l) Â
(l+k)
ly Â
2
​
+ky Â
1
​
Â
​
Â
​
Â
âŽ
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫
​
Â
⇒( Â
m+k+l
kx Â
1
​
+lx Â
2
​
+mx Â
3
​
Â
​
, Â
m+k+l
ky Â
1
​
+ly Â
2
​
+my Â
3
​
Â
​
)