Quadrilateral ABCD have vertices at A (-4,4), B(1, 1,), C(4,6), and D (-1,9). Based on the properties of the diagonals, I’d quadrilateral ABCD a rectangle, rhombus, or square? Use the distance and slope formulas to prove your conclusion.

Quadrilateral ABCD with vertices at A (-4,4), B(1, 1,), C(4,6), and D (-1,9). a rhombus.
A quadrilateral is a polygon with four sides and four angles. A rhombus is a quadrilateral in which opposite sides are equal and parallel. All the sides of a rhombus are congruent to each other, and opposite angles are congruent.
From the plot of Quadrilateral ABCD, we can see that all sides are equal. Quadrilateral ABCD with vertices at A (-4,4), B(1, 1,), C(4,6), and D (-1,9). a rhombus.
Find out more on Quadrilateral at: https://brainly.com/question/23935806
Answer:
Quadrilateral is a square.
Step-by-step explanation:
NOT 100% sure answer is correct.
Slope of AB Â Â Â Â Â Â Slope of CD Â Â Â Â Â Slope of BC Â Â Â Â Â Â Slope of AD
m = [tex]\frac{y2 - y1}{x2 - x1}[/tex] Â Â Â Â Â Â Â Â Â m = [tex]\frac{y2 - y1}{x2 - x1}[/tex] Â Â Â Â Â Â m = [tex]\frac{y2 - y1}{x2 - x1}[/tex] Â Â Â Â Â Â Â Â Â m = [tex]\frac{y2 - y1}{x2 - x1}[/tex]
ΔX = 1 - -4 = 5    ΔX = -1 – 4 = -5     ΔX = 1 – 4 = -3    ΔX = -1 - -4 = 3
ΔY = 1 – 4 = -3    ΔY = 9 – 6 = 3     ΔY = 1 – 6 = -5    ΔY = 9 – 4 = 5
m = -3/5 = -0.6 Â Â Â m = -3/5 = -0.6 Â Â Â Â m = 5/3 = 1.6 Â Â Â Â Â m = 5/3 = 1.6 Â Â
     Â
Distance AB Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Distance CD
d = [tex]\sqrt{(x2-x1)^{2} + (y2-y1)^{2}[/tex] Â Â Â Â Â Â Â Â d = [tex]\sqrt{(x2-x1)^{2} + (y2-y1)^{2}[/tex]
(x2 – x1) = (1 - -4) = 5               (x2 – x1) = (-1 – 4) = -5
(y2 – y1) = (1 – 4) = -3              (y2 – y1) = (9 - 6) = 3
Square results & sum them up: Â Â Â Â Â Square results & sum them up:
[tex](5)^{2}[/tex] + [tex](-3)^{2}[/tex] = 25 + 9 = 34 Â Â Â Â Â Â Â Â Â Â [tex](-5)^{2}[/tex] + [tex](3)^{2}[/tex] = 25 + 9 = 34
Find square root: √34 or 5.8  Find square root: √34 or 5.8
Distance BC Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Distance AD
d = [tex]\sqrt{(x2-x1)^{2} + (y2-y1)^{2}[/tex] Â Â Â Â Â Â Â Â Â d = [tex]\sqrt{(x2-x1)^{2} + (y2-y1)^{2}[/tex]
(x2 – x1) = (1 – 4) = -3               (x2 – x1) = (-1 - -4) = 3
(y2 – y1) = (1 – 6) = -5                (y2 – y1) = (9 – 4) = 5
Square results & sum them up: Â Â Â Â Â Square results & sum them up:
[tex](-3)^{2}[/tex] + [tex](-5)^{2}[/tex] = 9 + 25 = 34 Â Â Â Â Â Â Â Â Â [tex](3)^{2}[/tex] + [tex](5)^{2}[/tex] = 9 + 25 = 34
Find square root: √34 or 5.8      Find square root: √34 or 5.8