Respuesta :

[tex]62^{x+3}\leq7^{2x+1}\\ \ln 62^{x+3}\leq\ln 7^{2x+1}\\ (x+3)\ln 62\leq (2x+1)\ln 7\\ x\ln 62+3\ln 62\leq2x\ln 7+\ln 7\\ x\ln 62-2x\ln 7\leq\ln 7-3\ln 62\\ x(\ln 62-2\ln7)\leq \ln 7-3\ln 62\\ x\leq\dfrac{\ln 7-3\ln 62}{\ln 62-2\ln7}[/tex]