Let us say that y = vertical height and z =
hypotenuseÂ
dz/dt = 600Â
dy/dt = 0 since y (altitude) is constantÂ
sin(θ) = 2/3Â
Calculating for the angle: θ = arcsin(2/3) = 0.729728 radiansÂ
sin(θ) = y/zÂ
z sin(θ) = yÂ
We then differentiate the two sides with respect to time t:
dz/dt sin(θ)+ z cos(θ) dθ/dt = dy/dtÂ
(600) (2/3) + (3) cos (0.729728) dθ/dt = 0Â
400 + [3 / cos (0.729728) ] dθ/dt = 0Â
400+ 4.0249 dθ/dt = 0Â
dθ/dt = -98.38 radians/hourÂ
= -99.38/60 radians / minÂ
= -1.66 radians / min = 2PI - 1.66 radians / minÂ
= 4.62 radians / min   (ANSWER)