Respuesta :
The formula of Mean Absolute Deviation is:
MAD = ∑|x- x̄|
      ----------  Â
         n
Where:
x = data value
x̄ = mean
n = number of observations
You already have 2 values given which is the mean (7) and the number of observations (10). First you need to solve for the sum of x -  x̄. Let's put that in a table to get a better picture:
x       |x-x̄|
4Â Â Â Â |4-7| =Â Â 3
4Â Â Â Â |4-7| =Â Â 3
6Â Â Â Â |6-7| =Â Â 1
6Â Â Â Â |6-7| =Â Â 1
7Â Â Â Â |7-7| =Â Â 0
8Â Â Â Â |8-7| =Â Â 1
8Â Â Â Â |8-7| =Â Â 1
8Â Â Â Â |8-7| =Â Â 1
9Â Â Â Â |9-7| =Â Â 2
10Â Â Â |10-7| = 3
Now get the sum of the values in the column |x-xÌ„|.Â
3+3+1+1+0+1+1+1+2+3 = 16
Now that you have the sum you can input it into the first formula:
MAD = ∑|x- x̄|
      ----------   Â
         n
MAD =Â Â Â 16
      ----------   Â
         10
MAD = 1.6
The answer is then B.Â
MAD = ∑|x- x̄|
      ----------  Â
         n
Where:
x = data value
x̄ = mean
n = number of observations
You already have 2 values given which is the mean (7) and the number of observations (10). First you need to solve for the sum of x -  x̄. Let's put that in a table to get a better picture:
x       |x-x̄|
4Â Â Â Â |4-7| =Â Â 3
4Â Â Â Â |4-7| =Â Â 3
6Â Â Â Â |6-7| =Â Â 1
6Â Â Â Â |6-7| =Â Â 1
7Â Â Â Â |7-7| =Â Â 0
8Â Â Â Â |8-7| =Â Â 1
8Â Â Â Â |8-7| =Â Â 1
8Â Â Â Â |8-7| =Â Â 1
9Â Â Â Â |9-7| =Â Â 2
10Â Â Â |10-7| = 3
Now get the sum of the values in the column |x-xÌ„|.Â
3+3+1+1+0+1+1+1+2+3 = 16
Now that you have the sum you can input it into the first formula:
MAD = ∑|x- x̄|
      ----------   Â
         n
MAD =Â Â Â 16
      ----------   Â
         10
MAD = 1.6
The answer is then B.Â
Answer:
your answer should be B
i just took the test this is correct